Hardware

Schematics

Detailed circuit schematics and explanations for the Moto32 control unit.

Circuit Schematics

Complete circuit diagrams for the Moto32 control unit, with detailed explanations of each functional block.

Download Schematics

Full Schematic PDF

Download complete schematic in PDF format

Schematic Preview

View PNG preview of schematic

EasyEDA Source

Editable source files in EasyEDA format

Circuit Overview

The Moto32 circuit is divided into several functional blocks:

graph TB
    A[12V Battery Input] --> B[Power Supply<br/>Buck Converter]
    B --> C[ESP32-S3 Module<br/>Main MCU]
    A --> D[MOSFET Outputs<br/>8 Channels]
    C --> D
    E[USB-C Port] --> F[CH340C<br/>USB-UART]
    F --> C
    G[Protection<br/>TVS Diodes & Fuses] --> A
    C --> H[GPIO Expansion]

Power Supply Section

Input Power

12V Automotive Supply

Battery+ ──[Fuse]──[D1]──[C2]── 12V Rail
                              │
                              └── To Buck Converter (U3)
                              └── To MOSFET Sources

Components:

  • Input Fuse: 10A recommended (external)
  • D1 (SS34): Schottky diode for reverse polarity protection
    • Forward voltage: ~0.5V
    • Current rating: 3A
    • Protects circuit if battery connected backwards
  • C2 (22µF): Input bulk capacitance
    • Filters battery noise
    • Smooths load transients
Why Schottky? Lower forward voltage drop than standard diodes, reducing power loss and heat generation.

Buck Converter (3.3V Regulator)

AP63203WU-7 Step-Down Converter

12V ─┬─[U3: AP63203]─┬─ 3.3V @ 2A
     │               │
     └─[C10,C11]     └─[C4,C12]
        Input Cap       Output Cap

Key Specifications:

  • Input voltage: 3.8V to 32V (handles automotive transients)
  • Output voltage: 3.3V fixed
  • Output current: Up to 2A
  • Switching frequency: ~1.5MHz
  • Efficiency: >90% typical at 12V input

Circuit Details:

  • C10, C11: 22µF input capacitors (low ESR ceramic)
  • C4, C12: 10µF output capacitors
  • FB Network: Feedback resistors set output voltage
  • SW Pin: Switching node (connect to inductor if external)

Protection Features:

  • Thermal shutdown
  • Output short-circuit protection
  • Overcurrent limiting
  • Under-voltage lockout (UVLO)

ESP32-S3 Module Section

MCU Module

ESP32-S3-WROOM-1-N8R2

              ┌─────────────────┐
     3.3V ────┤ VCC         GPIO│──── To MOSFETs
     GND  ────┤ GND      GPIO   │──── Inputs
    UART0 ────┤ TXD/RXD   GPIO  │──── I2C/SPI
     EN   ────┤ EN        GPIO   │──── Expansion
     BOOT ────┤ GPIO0     EN     │──── Enable
              └─────────────────┘

Power Supply:

  • C1 (1µF): Primary decoupling capacitor (close to VCC pin)
  • C3, C5-C9 (100nF): Additional decoupling
  • R1 (10kΩ): Pull-up on EN (enable) pin

Programming Interface:

  • R2 (100kΩ): Boot mode pull-up
  • UART0: Connected to CH340C for USB programming
  • GPIO0: Boot select (LOW = download mode)

Module Features:

  • Dual-core Xtensa LX7 @ 240MHz
  • 8MB Flash memory
  • 2MB PSRAM
  • Wi-Fi 802.11 b/g/n
  • Bluetooth 5.0 LE
  • 45x GPIO pins (many multiplexed)

GPIO Assignments

Default Pin Mapping:

GPIOFunctionDirectionNotes
GPIO0Boot ModeInputPull-up, LOW = download mode
GPIO1-8MOSFET GatesOutputControl 8 output channels
GPIO9-16Input SwitchesInputHandlebar switches, sensors
GPIO17-18I2C (SDA/SCL)BidirectionalFuture expansion (IMU, sensors)
GPIO19-20CAN (TX/RX)BidirectionalFuture CAN bus support
GPIO43/44UART0 (TX/RX)BidirectionalUSB programming
Customizable: GPIO assignments can be changed in firmware to match your specific requirements.

USB Interface Section

USB-C Connector & CH340C

USB-to-Serial Bridge

USB-C ──[D4,D5]──┬── D+ ──[R20,R21]──┬── CH340C
                 │                    │
                 └── D- ──[R18,R19]──┘
                         
CH340C ──[TXD/RXD]── ESP32 UART0
       │
       └──[X1: 12MHz]── Crystal Oscillator

USB Protection:

  • D4, D5 (SMBJ58A): TVS diodes on USB data lines
    • Clamp ESD transients to safe levels
    • Bidirectional protection
    • Fast response time (<1ps)

CH340C Circuit:

  • U2 (CH340C): USB-to-UART converter IC
    • No external crystal needed (uses internal oscillator)
    • Automatic handshaking
    • 115200 baud default
  • X1 (12MHz): External crystal for precise timing
    • Required for stable USB communication
    • ±50ppm tolerance

Serial Connection:

  • TXD: CH340 transmit → ESP32 RXD
  • RXD: CH340 receive → ESP32 TXD
  • DTR/RTS: Automatic bootloader entry (if connected)
Driver Note: CH340 requires drivers on some operating systems. Download from manufacturer or install automatically via OS.

MOSFET Output Section

High-Side Switch Design

Each of the 8 outputs uses identical circuitry:

12V+ ────┬────────┬──── OUTPUT (to load)
         │        │
      [Source] [DMP4015SK3Q-13]
         │        │
      [Drain]     │
         │        │
     [Gate]───[R: 10kΩ]──── ESP32 GPIO
         │
        [R: 10kΩ]
         │
        GND

MOSFET: DMP4015SK3Q-13

ParameterValueNotes
TypeP-Channel MOSFETHigh-side switching
VDS-40VVoltage rating
ID-11AContinuous drain current
RDS(on)45mΩ @ -10V VGSLow on-resistance
PackageTO-252-2 (DPAK)Surface mount
VGS(th)-0.5V to -1.5VGate threshold voltage

Circuit Operation:

Output OFF (Default State):

  • ESP32 GPIO: HIGH (3.3V) or FLOATING
  • Gate pulled HIGH through 10kΩ resistor
  • Gate-Source voltage: ~0V
  • MOSFET: OFF (no conduction)
  • Output: FLOATING (no voltage)

Output ON (Activated):

  • ESP32 GPIO: LOW (0V)
  • Gate pulled to GND through GPIO
  • Gate-Source voltage: -12V
  • MOSFET: FULLY ON (low resistance)
  • Output: ~12V (battery voltage)

Gate Resistor (10kΩ):

  • Limits gate current during switching
  • Slows switching edge (reduces EMI)
  • Provides default OFF state
  • Acts as pull-up to 12V
Logic Level: Unlike typical P-channel designs, these MOSFETs are activated by pulling gate LOW (to GND), not below source.

Output Capabilities

Maximum Load Current:

Each output can safely handle:

  • Continuous: ~5A (with adequate cooling)
  • Peak: 10A (short duration)
  • Fused: External 5-10A fuse per output recommended

Typical Motorcycle Loads:

LoadCurrentSuitable?
Headlight (LED)1-3A✅ Yes
Headlight (Halogen 55W)4.5A✅ Yes (with fuse)
Tail/Brake Light (LED)0.2-1A✅ Yes
Turn Signal (LED)0.2-0.5A✅ Yes
Horn2-5A✅ Yes
Ignition Coil2-4A✅ Yes
Fuel Pump3-6A✅ Yes (with fuse)
Starter Relay (coil)0.5-1A✅ Yes
Cooling Fan5-10A⚠️ Use relay
High Current Loads: For loads >5A continuous, consider using Moto32 to drive a relay, with the relay switching the high-current load.

Inductive Load Protection

Flyback Protection (Built-in):

MOSFETs have internal body diodes that provide flyback protection for inductive loads (relays, solenoids):

      OUTPUT
         │
    [Inductive Load]
         │
        GND
         
Internal Body Diode:
  - Clamps negative voltage spikes
  - Protects MOSFET from back-EMF
  - No external diode needed

For heavy inductive loads, external TVS diodes can be added across outputs for additional protection.

Protection Circuits

TVS Diodes

SMBJ58A Transient Voltage Suppressors

12V+ ────[D4]──── To Circuit
         │
        GND

USB D+ ──[D5]──┐
               │
USB D- ──[D5]──┤
               │
              GND

Specifications:

  • Breakdown voltage: 58V nominal
  • Clamping voltage: <94V @ 10A
  • Peak pulse power: 600W
  • Response time: <1ps

Protection Against:

  • Load dump transients (alternator disconnect)
  • Inductive kick-back from large loads
  • ESD (electrostatic discharge)
  • Ignition system noise
  • Starter motor transients

Fuse Recommendations

Main Power Input:

  • Rating: 10A fast-blow
  • Type: Automotive blade fuse (ATO/ATC)
  • Location: Inline near battery connection

Individual Output Fusing (Optional):

  • Rating: 5-10A per output (match load)
  • Type: Automotive mini blade fuse
  • Benefit: Isolates fault to single output

Input Conditioning

Switch Inputs

Recommended circuit for handlebar switches:

3.3V ────[10kΩ]────┬──── GPIO Input
                   │
               [Switch]
                   │
                  GND

Features:

  • Pull-up resistor provides default HIGH state
  • Switch to GND for active LOW
  • GPIO internal pull-ups can be used (20-50kΩ)
  • Add 100nF capacitor for debouncing if needed

Input Protection:

For inputs exposed to vehicle electrical system:

12V Signal ──[10kΩ]──┬──[10kΩ]──── GPIO
                     │
                  [3.3V Zener]
                     │
                    GND
  • Voltage divider reduces 12V to 3.3V safe levels
  • Zener diode clamps overvoltage
  • Series resistor limits current

Expansion Interfaces

I2C Bus

For adding sensors (IMU, temperature, etc.):

ESP32 SDA ──┬──[4.7kΩ]── 3.3V
            │
        [Sensor SDA]
            
ESP32 SCL ──┬──[4.7kΩ]── 3.3V
            │
        [Sensor SCL]

Common I2C Additions:

  • IMU (lean angle sensor for turn signal auto-cancel)
  • Temperature sensor (thermal monitoring)
  • RTC (real-time clock for data logging)
  • EEPROM (configuration storage)

SPI Bus

For high-speed peripherals:

  • CAN bus transceivers
  • SD card for logging
  • External ADCs for analog inputs

CAN Bus (Future)

Planned addition for modern motorcycle communication:

ESP32 CAN_TX ──┬── CAN Transceiver ──┬── CAN_H
ESP32 CAN_RX ──┘   (e.g., MCP2551)   └── CAN_L

Applications:

  • Read ECU data (RPM, temperature, errors)
  • Communicate with ABS module
  • Integrate with TFT dashboard
  • Log vehicle data

PCB Traces & Grounding

Power Traces

Trace Width Calculations:

NetCurrentWidthNotes
12V Input5A>50 milWide traces, multiple layers
3.3V Rail2A>30 milStar topology from regulator
MOSFET Output5A each>40 milKeep traces short
GroundAll returnPlaneSolid ground planes

Ground Strategy

Multi-point grounding:

  • Separate analog and digital grounds at PCB level
  • Single point connection at power supply
  • Ground planes on inner layers
  • Via stitching for low impedance

Ground Loops Prevention:

  • Star grounding for power
  • Avoid ground loops in signal paths
  • Keep high current returns separate

Reading the Schematic

Component Designators

PrefixComponent TypeExample
UIntegrated CircuitU1 (ESP32), U2 (CH340)
QTransistor/MOSFETQ5-Q12 (MOSFETs)
RResistorR1 (10kΩ)
CCapacitorC1 (1µF)
DDiodeD1 (SS34)
LInductorL1 (if present)
XCrystalX1 (12MHz)
JConnectorJ1, J2

Net Names

Common net naming in schematic:

  • VCC / 3V3: 3.3V power rail
  • 12V / VBAT: 12V battery input
  • GND: Ground / 0V reference
  • OUTx: MOSFET output channels
  • INx: GPIO input channels

Design Calculations

Power Dissipation

Buck Converter:

Input Power = 12V × 0.5A = 6W
Output Power = 3.3V × 1.5A = 4.95W
Efficiency = 4.95W / 6W = 82.5%
Heat = 6W - 4.95W = 1.05W

MOSFET Losses:

Per MOSFET @ 5A load:
RDS(on) = 45mΩ
Power = I² × R = 5² × 0.045 = 1.125W
Thermal Management: MOSFETs may need heatsinking for continuous high-current operation. Consider PCB copper area as heatsink.

Schematic Checklist

When reviewing or modifying the schematic:

  • All ICs have decoupling capacitors
  • Power supply properly rated for load
  • Protection diodes oriented correctly
  • MOSFET source/drain connections correct
  • Pull-up/pull-down resistors on all inputs
  • No floating inputs or outputs
  • Ground connections complete
  • Fusing adequate for loads
  • Component ratings exceed requirements
  • Test points for critical signals

Next Steps

Bill of Materials

Get part numbers for all components

Assembly Guide

Learn how to assemble the PCB

PCB Overview

Understand the physical PCB design

Download Files

Get schematic PDF and source files